Introducing Ramanujan’s Class Polynomials in the Generation of Prime Order Elliptic Curves
نویسنده
چکیده
Complex Multiplication (CM) method is a frequently used method for the generation of prime order elliptic curves (ECs) over a prime field Fp. The most demanding and complex step of this method is the computation of the roots of a special type of class polynomials, called Hilbert polynomials. These polynonials are uniquely determined by the CM discriminant D. The disadvantage of these polynomials is that they have huge coefficients and thus they need high precision arithmetic for their construction. Alternatively, Weber polynomials can be used in the CM method. These polynomials have much smaller coefficients and their roots can be easily transformed to the roots of the corresponding Hilbert polynomials. However, in the case of prime order elliptic curves, the degree of Weber polynomials is three times larger than the degree of the corresponding Hilbert polynomials and for this reason the calculation of their roots involves computations in the extension field Fp3 . Recently, two other classes of polynomials, denoted by MD,l(x) and MD,p1,p2(x) respectively, were introduced which can also be used in the generation of prime order elliptic curves. The advantage of these polynomials is that their degree is equal to the degree of the Hilbert polynomials and thus computations over the extension field can be avoided. In this paper, we propose the use of a new class of polynomials. We will call them Ramanujan polynomials named after Srinivasa Ramanujan who was the first to compute them for few values of D. We explicitly describe the algorithm for the construction of the new polynomials, show that their degree is equal to the degree of the corresponding Hilbert polynomials and give the necessary transformation of their roots (to the roots of the corresponding Hilbert polynomials). Moreover, we compare (theoretically and experimentally) the efficiency of using this new class against the use of the aforementioned Weber, MD,l(x) and MD,p1,p2(x) polynomials and show that they clearly outweigh all of them in the generation of prime order elliptic curves.
منابع مشابه
Ramanujan's class invariants and their use in elliptic curve cryptography
Complex Multiplication (CM) method is a frequently used method for the generation of elliptic curves (ECs) over a prime field Fp. The most demanding and complex step of this method is the computation of the roots of a special type of class polynomials, called Hilbert polynomials. However, there are several polynomials, called class polynomials, which can be used in the CM method and have much s...
متن کاملGenerating Prime Order Elliptic Curves: Difficulties and Efficiency Considerations
We consider the generation of prime order elliptic curves (ECs) over a prime field Fp using the Complex Multiplication (CM) method. A crucial step of this method is to compute the roots of a special type of class field polynomials with the most commonly used being the Hilbert and Weber ones, uniquely determined by the CM discriminant D. In attempting to construct prime order ECs using Weber pol...
متن کاملOn the Efficient Generation of Elliptic Curves over Prime Fields
We present a variant of the complex multiplication method that generates elliptic curves of cryptographically strong order. Our variant is based on the computation of Weber polynomials that require significantly less time and space resources than their Hilbert counterparts. We investigate the time efficiency and precision requirements for generating off-line Weber polynomials and its comparison...
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملGenerating Elliptic Curves of Prime Order
A variation of the Complex Multiplication (CM) method for generating elliptic curves of known order over finite fields is proposed. We give heuristics and timing statistics in the mildly restricted setting of prime curve order. These may be seen to corroborate earlier work of Koblitz in the class number one setting. Our heuristics are based upon a recent conjecture by R. Gross and J. Smith on n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008